Solutions from last class

Check your answers while MacKenzie checks HW

4.1 Factor using the area model. State your answer.

$$1. x^{2} + 8x + 7$$

$$\frac{\chi}{\chi^{2}} + \frac{\chi}{\chi^{2}} = 8\chi$$

$$+1 + \chi + \frac{1}{\chi}$$

$$= \frac{(\chi + \frac{1}{\chi})(\chi + 1)}{(\chi + 1)}$$

2.
$$x^2 + 11x + 18$$

$$\frac{1}{12} + \frac{1}{12} = \frac{1}{12}$$

$$= \frac{(\chi + \eta)(\chi + 2)}{(\chi + 2)}$$

3.
$$x^{\frac{3}{4}} - 7x + 12$$

$$\frac{\sqrt{\chi^2 - 3\chi}}{\sqrt{4\chi + 12}} = -7\chi$$

$$= (\chi - 3)(\chi - 4)$$

4.
$$x^2 + 14x + 45$$

$$\frac{1}{100}$$
 $\frac{1}{100}$ $\frac{1}$

$$= (\chi + 9)(\chi + 5)$$

5.
$$x^2 - 2x - 15$$

$$\frac{1}{15}$$
 $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$

$$= (\chi-5)(\chi+3)$$

6.
$$x^2 - 8x + 16$$

$$\frac{\lambda}{\lambda} = -8\lambda$$

$$-4 = -8\lambda$$

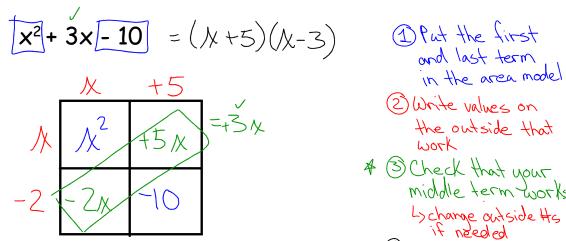
$$= \left(\frac{1}{1} - \frac{4}{1} \right) \left(\frac{1}{1} - \frac{4}{1} - \frac{4}{1} \right) \left(\frac{1}{1} - \frac{4}{1} - \frac{4}{1} \right) \left(\frac{1}{1} - \frac{4}{1} - \frac{4}{1} \right) \left(\frac{1}{1} - \frac{4}{1}$$

7.
$$x^2 + 4x - 21$$

$$\frac{1}{100} \frac{1}{100} \frac{1}{100} = 4x$$

$$= (\chi + 7)(\chi - 3)$$

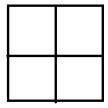
8.
$$x^2 - 3x - 18$$

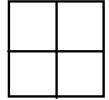

$$\frac{X - 6}{18}$$
 = -3x

$$= (\chi - \xi)(\chi + 3)$$

Factoring Trinomials

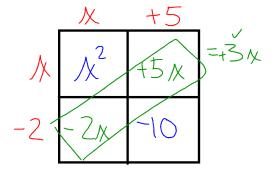
Last class we learned to factor using an area model.


$$x^2 + 3x - 10 = (x + 5)(x - 3)$$


- # 3 Check that your middle term works Lychange outside Hs if needed
 - 1) Write the factored

Let's factor the following together as a warmup:

$$x^2 + 8x - 9$$


$$x^2 - 13x + 22$$

Factoring Trinomials

Last class we learned to factor using an area model.

$$x^2 + 3x - 10 = (x + 5)(x - 3)$$

1) Put the first and last term in the area model

2) Write values on the outside that work

* 3 Check that your middle term works Lychange outside Hs if needed

Durite the factored form

Let's factor the following together as a warmup:

$$\boxed{x^2 + 8x - 9} = (\chi + 9)(\chi - 1)$$

$$\begin{pmatrix} x + 9 \\ x^2 + 9 \\ -1 \end{pmatrix} = +8x$$

$$x^2 - 13x + 22 = (\chi - 1)(\chi - 2)$$

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\frac{5-13}{(\chi-2)(\chi-11)}$$

On a piece of paper, with your neighbour

Factor using an area model:

$$x^2 + 8x + 12$$

$$x^2 + 5x - 36$$

$$x^2 - 5x - 14$$

$$x^2 - 10x + 16$$

Solutions

Factor using an area model:

$$x^2 + 8x + 12 = (x+6)(x+2)$$

$$x^2 + 5x - 36 = (x+9)(x-4)$$

$$x^2 - 5x - 14 = (x-7)(x+2)$$

$$x^2 - 10x + 16 = (x-2)(x-8)$$

Recall form last unit

What does each form tell you about the parabola?

Factored Form

$$y = -2(x-3)(x+4)$$

pull down to reveal

Zeros: 3 and-4

Vertex Form

$$y = 3(x-4)^2 + 6$$
 vertex: (+4, +6)

Standard Form

y=4x2+7x=10 y-intercept = -10

What do we know about this quadratic?

$$y = x^2 - 6x - 16$$

What would be the benefit of factoring this equation?

What do we know about this quadratic?

$$y = x^2 - 6x - 16$$

$$y = x^2 - 6x \underbrace{-16}$$
 y-intercept = -16

What would be the benefit of factoring this equation?

We will also be able to identify the zeroes

Factoring to Find Zeros

handout

We know the y-intercept from an equation in standard form.

$$y = x^2 - 6x - 16$$

 $y = x^2 - 6x - 16$ the y-intercept is _____

If we rearrange the equation to factored form we can find the zeros.

To do this we need to factor using our area model.

$$y = x^2 - 6x - 16$$

the zeros are ____ and ____

* remember the zeros change signs when we pull them out of the brackets

Factor the following. Then state the y-intercept and zeros.

$$y = x^2 + 10x + 21$$

the y-intercept is _____

the zeros are ____ and ____.

Try the next one with your partner

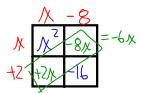
$$y = x^2 - 11x + 24$$

the y-intercept is _____

the zeros are ____ and ____.

Factoring to Find Zeros

We know the y-intercept from an equation in standard form.


$$y = x^2 - 6x - 16$$

 $y = x^2 - 6x - 16$ the y-intercept is _____

If we rearrange the equation to factored form we can find the zeros.

To do this we need to factor using our area model.

$$y = x^2 - 6x - 16$$

 $y = (k-8)(k+2)$

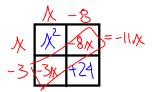
the zeros are $\frac{+8}{}$ and $\frac{-2}{}$

* remember the zeros change signs when we pull them out of the brackets

Factor the following. Then state the y-intercept and zeros.

$$y = x^2 + 10x + 21$$

$$(x + 7)(x + 3)$$


the y-intercept is +2

the zeros are $\frac{-7}{}$ and $\frac{-3}{}$.

$$\frac{1}{12}$$
 $\frac{1}{12}$ $\frac{1}{12}$

$$y = x^2 - 11x + 24$$

$$y=(x-8)(x-3)$$

the y-intercept is ± 24

the zeros are $\frac{+8}{}$ and $\frac{+3}{}$.

Individual Practice - Back of the sheet (finish in class or for homework)

1. For each relation,	, find the	y-intercept	, then	factor to	find x-int	ercepts

a) Standard Form:

$$y = x^2 + 7x + 10$$

$$y = x^2 + 7x + 10$$

Y-int	=	

Factor:

$$y = x^2 + 4x - 21$$

Y-int = _____

Factor:

$$y = x^2 - 8x + 12$$

Y-int = _____

b) Standard form:

Factor:

Factored form:

Factored form:

x-int's: _____

x-int's: _____

x-int's: _____

2. For each relation, factor to find the x-intercepts (zeroes).

a)
$$y = x^2 + 6x + 5$$

Factored form:

a)
$$y = x^2 + 6x + 5$$
 c) $y = x^2 - 12x + 20$

e)
$$y = x^2 - 4x - 21$$

zeroes: _____

zeroes: _____

zeroes: _____

b)
$$y = x^2 - 5x - 36$$

d)
$$y = x^2 - 9x + 20$$

f)
$$y = x^2 - 6x - 27$$

zeroes: _____

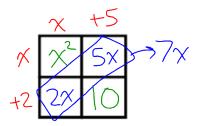
zeroes: _____

zeroes: _____

Individual practice

handout

b) Standard form:

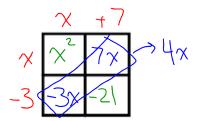

 $y = x^2 - 8x + 12$

1. For each relation, find the y-intercept, then factor to find x-intercepts

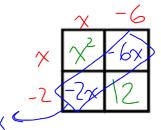
a) Standard Form:

$$y = x^2 + 7x + 10$$

Factor:


Standard form:

$$y = x^2 + 4x(-21)$$


Y-int =
$$\frac{-2}{}$$

Y-int = 2

Factor:

Factor:

Factored form:

$$\underline{y = (\chi + 5)(\chi + 2)}$$

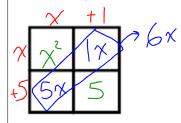
x-int's: -5and -2

Factored form:

$$y = (x+7)(x-3)$$

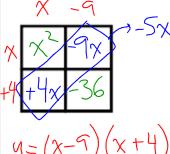
Factored form:

$$\frac{\sqrt{-6}(x-6)(x-5)}{\sqrt{1-5}}$$

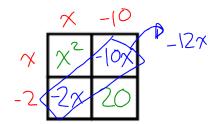

x-int's: +6 and +2

handout

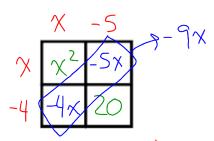
2. For each relation, factor to find the x-intercepts (zeroes).


a)
$$y = x^2 + 6x + 5$$

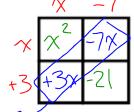
$$(\chi+1)(\chi+5)$$


zeroes: - | and -5

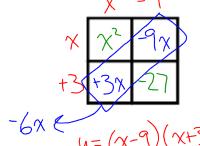
b)
$$y = x^2 - 5x - 36$$


zeroes: 9 and -4

c)
$$y = x^2 - 12x + 20$$


y = (x-10)(x-2)zeroes: 10 and 2

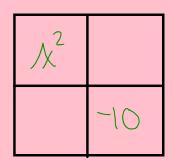
d)
$$y = x^2 - 9x + 20$$


 $y=(\chi-5)(\chi-4)$ zeroes: 5 and 4

e)
$$y = x^2 - 4x - 21$$

y = (x-7)(x+3)zeroes: $\frac{7}{3}$ and $\frac{3}{3}$

f)
$$y = x^2 - 6x - 27$$


zeroes: 9 and -3

Let's start our Pink Sheets for unit 4
MacKenzie to handout duotangs

Unit 4 - Quadratics and Factoring

Factoring:

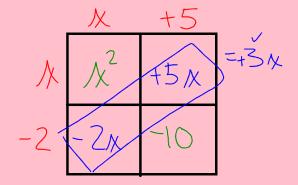
$$x^2 + 3x - 10$$

1) Put the first and last term in the window 2) Write values on

2) Write values on the outside that work

* 3 Check that your middle term works Lychange outside Hs if needed

DWitethe factored form


Add your own factoring question with

- a negative middle term and positive third term

Unit 4 - Quadratics and Factoring

Factoring:

$$[x^2] + 3x[-10] = (x + 5)(x - 3)$$
 Deat the first and last term in the window

2) Write values on the outside that

* 3 Check that your middle term works

1) Write the factored

Add your own factoring question with

- a negative middle term and positive third term

Hand back Evidence Records (and leftover tests if you were absent Monday)