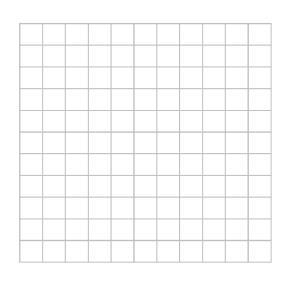
So far we have been	and	
In this unit we will look at		
(finding the Point of Intersection bet	ween 2 lines)	
We are now going to see how this can	help us to make decisions!	
- choosing a cell phone plan, rer	ntal company or fitness plan	

 $\underline{\mathsf{Ex.1}}$ A fitness club offers two types of payment plans:

DROP- IN: \$3 per visit

MEMBERS ONLY: a flat fee of \$8 plus \$2 per visit

a) Create an equation that represents the cost (C) per number of visits (n)


DROP- IN:

MEMBERS ONLY:

b) Create a table of values that represents the cost \mathcal{C} per n visits and graph each of the scenarios on the following grid.

DROP	- IN
n	С
0	
1	
2	
3	
4 5	
5	
6	
7	
8	
9	
10	

MEMBE	RS ONLY
n	С
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- c) What is the point of intersection? What does it represent?
- d) Which fitness club payment plan would you choose? Explain.

- Ex. 2 Crystal has no money in her bank account but she plans to deposit \$10 at the end of each week. Steve has \$150 in his bank account but plans to take out \$15 at the end of each week.
- a) Write an equation for each situation, where T is the total amount in their bank account and w is the number of weeks that have passed.

Crystal: _____ Steve: ____

b) Fill in the table and ara

b) Fill in th	ne table an
# of	Crystal's
Weeks	Savings
0	

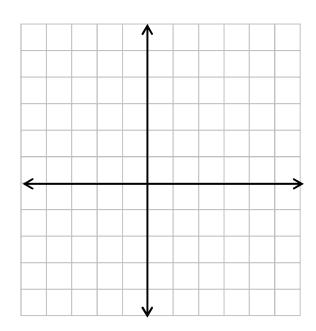
# of	Steve's						
Weeks	Savings						
0							

20 -	<u></u>			ļ		 	 ļ		 	 	 	 	
40 -	<u> </u>	ļ		ļ			ļ	 	 			 	
- 60 -	<u> </u>		 		 	 	 		 	 	 	 	
- - 08	ţ								 	 	 	 	
00 -	ļ		 		 	 	 	 	 	 	 	 	
20 -	<u> </u>		 			 			 	 	 	 	
40 -	<u> </u>				 	 	 -		 	 	 	 	

c) After how many weeks will Crystal and Steve have the same amounts of money in the bank?

Definitions:

System of linear equations: a _____ of equations. (at least ____)


Solution of a linear system: the _____ of ____ (POI).

(a point that satisfies both equations). "Where the lines cross"

Example 3:

Solve the system (by graphing)

$$y = 2x$$
 and $y = -\frac{1}{2}x + 5$

