7.2 Optimization Conclusions

OPTIMAL VALUE OF MEASUREMENTS IN 2D:

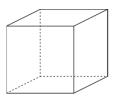
A rectangle that will minimize perimeter and maximize area is a ______

Optimized Formulas: A =

$$A =$$

$$P =$$

> For a rectangular shape with perimeter only along three sides, the dimensions that produce the optimal measurements are


OPTIMAL VALUE OF MEASUREMENTS IN 3D:

Rectangular Prisms:

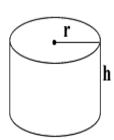
The rectangular prism that will minimize surface area and maximize volume is a ______.

$$V = lwh$$

$$SA = 2(lw + lh + wh)$$

Optimized Formulas: V =

$$V =$$


$$SA =$$

Cylinders:

The cylinder that will minimize surface area and maximize volume has the following dimensions:

$$V = \pi r^2 h$$

$$SA = 2\pi r^2 + 2\pi rh$$

$$V =$$

Ex1. Determine the dimensions of a rectangular prism with a volume of 500m³ that minimizes surface area.
Ex2. A rectangular prism has a surface area of 400m ² . What is the maximum volume it can hold?
Ex3. A cylinder has a volume of 50m ³ . What is the minimum surface area needed?
Ex4. Prove which 3D shape gives the minimum surface area given a volume of 1000m ³ , a cube, cylinder or a sphere? Show your work.